Physics MCQs

Physics

Rotational and Circular Motion


Page 11 of 24

#81

In absence of external torque, a spinning body tends to:

A) lose all rotational KE

B) keep its angular momentum vector constant

C) double its angular speed

D) reverse spin spontaneously

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#82

Moment of inertia of a solid disc about the standard axis is:

A) $I=ML^{2}$

B) $I=\tfrac34 MR^{2}$

C) $I=\tfrac12 MR^{2}$

D) $I=\tfrac23 MR^{2}$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#83

Moment of inertia of a solid disc about the standard axis is:

A) $I=\tfrac34 MR^{2}$

B) $I=\tfrac12 MR^{2}$

C) $I=\tfrac23 MR^{2}$

D) $I=ML^{2}$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#84

Moment of inertia of a thin rod (center) about the standard axis is:

A) $I=ML^{2}$

B) $I=\tfrac{1}{12}ML^{2}$

C) $I=\tfrac23 MR^{2}$

D) $I=\tfrac34 MR^{2}$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#85

Choose the correct set of analogies:

A) $F\leftrightarrow I,\ a\leftrightarrow\tau,\ m\leftrightarrow\alpha$

B) $F\leftrightarrow a,\ m\leftrightarrow\tau,\ I\leftrightarrow\alpha$

C) $F\leftrightarrow \omega,\ a\leftrightarrow I,\ m\leftrightarrow\tau$

D) $F\leftrightarrow \tau,\ a\leftrightarrow\alpha,\ m\leftrightarrow I$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#86

A mass $m=2\,\text{kg}$ moves in a circle of radius $r=5\,\text{m}$ with speed $v=4\,\text{m s}^{-1}$. The required centripetal force is:

A) $\dfrac{mv^2}{r}$

B) $\dfrac{v}{mr}$

C) $mvr$

D) $\dfrac{r}{mv^{2}}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#87

For a rigid body rolling without slipping, total kinetic energy equals:

A) $I\omega$

B) $\tfrac12 mv^{2}+\tfrac12 I\omega^{2}$

C) $\tfrac12 mv^{2}$

D) $\tfrac12 I\omega^{2}$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#88

Work done by a constant torque $\tau$ through angle $\theta$ is:

A) $W=\alpha\theta$

B) $W=\tau\,\theta$

C) $W=\tau/\theta$

D) $W=I\omega$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:



Page 11 of 24