Rotational and Circular Motion
Magnitude of torque is:
A) $\tau=rF\sin\theta$
B) $\tau=rF\cos\theta$
C) $\tau=\dfrac{F}{r}$
D) $\tau=r/F$
Work in rotational motion:
A) $W=\tau\,\theta$ (for constant $\tau$)
B) $W=\omega\,\tau$
C) $W=\alpha\,\theta$
D) $W=I\,\theta$
Power in rotational motion:
A) $P=\tau\,\omega$
B) $P=\dfrac{\tau}{\omega}$
C) $P=I\alpha$
D) $P=\omega/\tau$
Rotational analog of $F=ma$:
A) $\tau=I\alpha$
B) $\tau=I\omega$
C) $\tau=\alpha/I$
D) $\tau=mv$
Moment of inertia of a point mass $m$ at distance $r$:
A) $I=mr^{2}$
B) $I=\dfrac{m}{r^{2}}$
C) $I=\dfrac{r^{2}}{m}$
D) $I=mr$
$I$ of a thin ring (hoop) of mass $M$ and radius $R$ about its axis:
A) $I=MR^{2}$
B) $I=\tfrac12 MR^{2}$
C) $I=\tfrac25 MR^{2}$
D) $I=\tfrac13 MR^{2}$
$I$ of a solid disc (about central axis):
A) $I=\tfrac12 MR^{2}$
B) $I=MR^{2}$
C) $I=\tfrac25 MR^{2}$
D) $I=\tfrac13 MR^{2}$
Register or Login for comments
Comments: