Rotational and Circular Motion
$I$ of a thin rod of length $L$ about center and perpendicular to length:
A) $I=\tfrac{1}{12}ML^{2}$
B) $I=\tfrac{1}{3}ML^{2}$
C) $I=\tfrac12 ML^{2}$
D) $I=ML^{2}$
$I$ of the same rod about one end (perp. to length):
A) $I=\tfrac{1}{3}ML^{2}$
B) $I=\tfrac{1}{12}ML^{2}$
C) $I=\tfrac12 ML^{2}$
D) $I=ML^{2}$
Parallel axis theorem:
A) $I=I_{\text{cm}}+Md^{2}$
B) $I=I_{\text{cm}}-Md^{2}$
C) $I=I_{\text{cm}}/Md^{2}$
D) $I=Md^{2}$
Perpendicular axis theorem (plane lamina):
A) $I_{z}=I_{x}+I_{y}$
B) $I_{z}=I_{x}-I_{y}$
C) $I_{z}=I_{x}I_{y}$
D) $I_{z}=\dfrac{I_{x}}{I_{y}}$
Angular momentum for rigid body:
A) $L=I\omega$
B) $L=I\alpha$
C) $L=\tau\omega$
D) $L=\dfrac{I}{\omega}$
For a particle, angular momentum is:
A) $\vec L=\vec r\times\vec p$
B) $\vec L=\vec p\times\vec r$
C) $\vec L=\vec r\cdot\vec p$
D) $\vec L=\vec p/\vec r$
Torque–angular momentum relation:
A) $\vec\tau=\dfrac{d\vec L}{dt}$
B) $\vec\tau=\vec L\,dt$
C) $\vec\tau=\vec L/t$
D) $\vec\tau=\vec L$
Register or Login for comments
Comments: