Physics MCQs

Physics

Rotational and Circular Motion


Page 3 of 24

#17

$I$ of a thin rod of length $L$ about center and perpendicular to length:

A) $I=\tfrac{1}{12}ML^{2}$

B) $I=\tfrac{1}{3}ML^{2}$

C) $I=\tfrac12 ML^{2}$

D) $I=ML^{2}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#18

$I$ of the same rod about one end (perp. to length):

A) $I=\tfrac{1}{3}ML^{2}$

B) $I=\tfrac{1}{12}ML^{2}$

C) $I=\tfrac12 ML^{2}$

D) $I=ML^{2}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#19

Parallel axis theorem:

A) $I=I_{\text{cm}}+Md^{2}$

B) $I=I_{\text{cm}}-Md^{2}$

C) $I=I_{\text{cm}}/Md^{2}$

D) $I=Md^{2}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#20

Perpendicular axis theorem (plane lamina):

A) $I_{z}=I_{x}+I_{y}$

B) $I_{z}=I_{x}-I_{y}$

C) $I_{z}=I_{x}I_{y}$

D) $I_{z}=\dfrac{I_{x}}{I_{y}}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#21

Angular momentum for rigid body:

A) $L=I\omega$

B) $L=I\alpha$

C) $L=\tau\omega$

D) $L=\dfrac{I}{\omega}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#22

For a particle, angular momentum is:

A) $\vec L=\vec r\times\vec p$

B) $\vec L=\vec p\times\vec r$

C) $\vec L=\vec r\cdot\vec p$

D) $\vec L=\vec p/\vec r$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#23

Torque–angular momentum relation:

A) $\vec\tau=\dfrac{d\vec L}{dt}$

B) $\vec\tau=\vec L\,dt$

C) $\vec\tau=\vec L/t$

D) $\vec\tau=\vec L$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#24

Kinetic energy of rotation:

A) $K_{rot}=\tfrac12 I\omega^{2}$

B) $K_{rot}=I\omega$

C) $K_{rot}=\tfrac12 m\omega^{2}$

D) $K_{rot}=\tfrac12 I\alpha^{2}$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:



Page 3 of 24