Rotational and Circular Motion
For bank angle $\phi$, ideal speed $v$ (no friction):
A) $v=\sqrt{rg\tan\phi}$
B) $v=\sqrt{gr\tan\phi}$
C) $v=\sqrt{g/\tan\phi}$
D) $v=\sqrt{r/g}$
Conical pendulum tension provides:
A) centripetal component
B) tangential component only
C) no radial component
D) weightless support
Radial component of acceleration in circular motion:
A) $a_{r}=\dfrac{v^{2}}{r}$
B) $a_{r}=v^{2}r$
C) $a_{r}=\dfrac{r}{v^{2}}$
D) $a_{r}=vr$
Tangential acceleration is:
A) $a_{t}=r\alpha$
B) $a_{t}=\dfrac{\alpha}{r}$
C) $a_{t}=\dfrac{r}{\alpha}$
D) $a_{t}=r\omega$
For disc rolling without slipping down incline, acceleration is:
A) $a=\dfrac{g\sin\theta}{1+\tfrac{I}{mR^{2}}}$
B) $a=g\sin\theta$
C) $a=\dfrac{g\sin\theta}{2}$
D) $a=\dfrac{g\cos\theta}{1+I/mR^{2}}$
Gyroscope resists change in:
A) axis of rotation
B) mass
C) speed of light
D) inertia of translation
Static friction for rolling without slipping does:
A) no work at point of contact (ideal rigid surface)
B) positive work
C) negative work
D) always zero force
Register or Login for comments
Comments: