Rotational and Circular Motion
Unit of angular momentum:
A) $\text{kg m}^{2}\text{s}^{-1}$
B) $\text{kg m s}^{-1}$
C) $\text{N m}$
D) $\text{J}$
S.I. unit of moment of inertia:
A) $\text{kg m}^{2}$
B) $\text{kg m}$
C) $\text{kg m}^{-2}$
D) $\text{kg s}^{2}$
Dimension of torque is same as:
A) work/energy
B) power
C) momentum
D) pressure
But torque is different from work because:
A) it is an axial (pseudovector)
B) it has different unit
C) it is scalar
D) it is dimensionless
Angular impulse equals change in:
A) angular momentum
B) kinetic energy
C) torque
D) moment of inertia
$\omega$–$\alpha$ relation in constant angular acceleration:
A) $\omega^{2}=\omega_{0}^{2}+2\alpha\theta$
B) $\omega=\omega_{0}+\alpha\theta$
C) $\omega^{2}=\omega_{0}\alpha\theta$
D) $\omega=\alpha/\theta$
Rotational kinematic equation:
A) $\theta=\omega_{0}t+\tfrac12\alpha t^{2}$
B) $\theta=\omega t^{2}$
C) $\theta=\tfrac12\omega t$
D) $\theta=\alpha/t$
Register or Login for comments
Comments: