Measusrement
The constant $c$ in $E=mc^{2}$ has unit:
A) $\text{m s}^{-1}$
B) $\text{m s}^{-2}$
C) $\text{s}^{-1}$
D) $\text{m}$
Check the relation $T=2\pi\sqrt{\dfrac{l}{g}}$ for a simple pendulum by dimensions.
A) Consistent
B) Inconsistent
C) Depends on amplitude
D) Depends on mass
Is $E=\tfrac{1}{2}mv^{2}$ dimensionally consistent?
A) Yes
B) No
C) Gives momentum
D) Gives power
Is $E=\tfrac{1}{2}mv^{2}$ dimensionally consistent?
A) Yes
B) No
C) Gives momentum
D) Gives power
Is $E=\tfrac{1}{2}mv^{2}$ dimensionally consistent?
A) Yes
B) No
C) Gives momentum
D) Gives power
Check the relation $T=2\pi\sqrt{\dfrac{l}{g}}$ for a simple pendulum by dimensions.
A) Consistent
B) Inconsistent
C) Depends on amplitude
D) Depends on mass
Is $P=Fv$ dimensionally consistent?
A) Yes, gives power
B) No, gives energy
C) No, gives momentum
D) No, gives pressure
Register or Login for comments
Comments: