Work and Energy
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta p$
B) $W_{\text{net}}=\Delta U$
C) $W_{\text{net}}=m\Delta v$
D) $W_{\text{net}}=\Delta K$
Instantaneous power delivered by a constant force is:
A) $P=\vec F\cdot\vec v$
B) $P=F/v$
C) $P=F^2v$
D) $P=Fv\sin\theta$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) minimum
B) zero
C) maximum
D) undefined
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta K$
B) $W_{\text{net}}=\Delta U$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=m\Delta v$
Instantaneous power delivered by a constant force is:
A) $P=\vec F\cdot\vec v$
B) $P=Fv\sin\theta$
C) $P=F/v$
D) $P=F^2v$
Dimensions of power are:
A) $ML^{2}T^{-3}$
B) $MLT^{-2}$
C) $ML^{2}T^{-2}$
D) $M^{0}L^{0}T^{-1}$
Instantaneous power delivered by a constant force is:
A) $P=F^2v$
B) $P=F/v$
C) $P=\vec F\cdot\vec v$
D) $P=Fv\sin\theta$
Register or Login for comments
Comments: