Physics MCQs

Physics

Work and Energy


Page 14 of 23

#105

Instantaneous power delivered by a constant force is:

A) $P=F/v$

B) $P=Fv\sin\theta$

C) $P=F^2v$

D) $P=\vec F\cdot\vec v$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#106

Instantaneous power delivered by a constant force is:

A) $P=F^2v$

B) $P=Fv\sin\theta$

C) $P=\vec F\cdot\vec v$

D) $P=F/v$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#107

For a conservative force, the potential energy function $U$ satisfies:

A) $\nabla\times\vec F=\nabla U$

B) $\nabla\cdot\vec F=U$

C) $\vec F=+\nabla U$

D) $\vec F=-\nabla U$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#108

At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:

A) minimum

B) undefined

C) zero

D) maximum

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#109

The work–energy theorem for a particle of mass $m$ is:

A) $W_{\text{net}}=\Delta p$

B) $W_{\text{net}}=\Delta K$

C) $W_{\text{net}}=m\Delta v$

D) $W_{\text{net}}=\Delta U$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#110

The work–energy theorem for a particle of mass $m$ is:

A) $W_{\text{net}}=m\Delta v$

B) $W_{\text{net}}=\Delta U$

C) $W_{\text{net}}=\Delta K$

D) $W_{\text{net}}=\Delta p$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#111

The work–energy theorem for a particle of mass $m$ is:

A) $W_{\text{net}}=\Delta U$

B) $W_{\text{net}}=\Delta K$

C) $W_{\text{net}}=\Delta p$

D) $W_{\text{net}}=m\Delta v$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#112

Dimensions of power are:

A) $M^{0}L^{0}T^{-1}$

B) $MLT^{-2}$

C) $ML^{2}T^{-3}$

D) $ML^{2}T^{-2}$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:



Page 14 of 23