Work and Energy
Instantaneous power delivered by a constant force is:
A) $P=F/v$
B) $P=Fv\sin\theta$
C) $P=F^2v$
D) $P=\vec F\cdot\vec v$
Instantaneous power delivered by a constant force is:
A) $P=F^2v$
B) $P=Fv\sin\theta$
C) $P=\vec F\cdot\vec v$
D) $P=F/v$
For a conservative force, the potential energy function $U$ satisfies:
A) $\nabla\times\vec F=\nabla U$
B) $\nabla\cdot\vec F=U$
C) $\vec F=+\nabla U$
D) $\vec F=-\nabla U$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) minimum
B) undefined
C) zero
D) maximum
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta p$
B) $W_{\text{net}}=\Delta K$
C) $W_{\text{net}}=m\Delta v$
D) $W_{\text{net}}=\Delta U$
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=m\Delta v$
B) $W_{\text{net}}=\Delta U$
C) $W_{\text{net}}=\Delta K$
D) $W_{\text{net}}=\Delta p$
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta U$
B) $W_{\text{net}}=\Delta K$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=m\Delta v$
Register or Login for comments
Comments: