Work and Energy
For a conservative force, the potential energy function $U$ satisfies:
A) $\nabla\times\vec F=\nabla U$
B) $\vec F=-\nabla U$
C) $\nabla\cdot\vec F=U$
D) $\vec F=+\nabla U$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) minimum
B) zero
C) maximum
D) undefined
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) undefined
B) zero
C) maximum
D) minimum
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta U$
B) $W_{\text{net}}=m\Delta v$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=\Delta K$
Energy stored in a spring stretched by $x$ is:
A) $kx$
B) $kx^2$
C) $\tfrac12 kx^2$
D) $k/x$
Instantaneous power delivered by a constant force is:
A) $P=F/v$
B) $P=\vec F\cdot\vec v$
C) $P=F^2v$
D) $P=Fv\sin\theta$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) undefined
B) minimum
C) zero
D) maximum
Register or Login for comments
Comments: