Physics MCQs

Physics

Work and Energy


Page 16 of 23

#121

For a conservative force, the potential energy function $U$ satisfies:

A) $\nabla\times\vec F=\nabla U$

B) $\vec F=-\nabla U$

C) $\nabla\cdot\vec F=U$

D) $\vec F=+\nabla U$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#122

At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:

A) minimum

B) zero

C) maximum

D) undefined

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#123

At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:

A) undefined

B) zero

C) maximum

D) minimum

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#124

The work–energy theorem for a particle of mass $m$ is:

A) $W_{\text{net}}=\Delta U$

B) $W_{\text{net}}=m\Delta v$

C) $W_{\text{net}}=\Delta p$

D) $W_{\text{net}}=\Delta K$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#125

Energy stored in a spring stretched by $x$ is:

A) $kx$

B) $kx^2$

C) $\tfrac12 kx^2$

D) $k/x$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#126

Instantaneous power delivered by a constant force is:

A) $P=F/v$

B) $P=\vec F\cdot\vec v$

C) $P=F^2v$

D) $P=Fv\sin\theta$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#127

At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:

A) undefined

B) minimum

C) zero

D) maximum

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#128

For a conservative force, the potential energy function $U$ satisfies:

A) $\nabla\cdot\vec F=U$

B) $\vec F=+\nabla U$

C) $\nabla\times\vec F=\nabla U$

D) $\vec F=-\nabla U$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:



Page 16 of 23