Work and Energy
Energy stored in a spring stretched by $x$ is:
A) $\tfrac12 kx^2$
B) $k/x$
C) $kx^2$
D) $kx$
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta U$
B) $W_{\text{net}}=\Delta K$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=m\Delta v$
Dimensions of power are:
A) $ML^{2}T^{-2}$
B) $ML^{2}T^{-3}$
C) $M^{0}L^{0}T^{-1}$
D) $MLT^{-2}$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) zero
B) minimum
C) maximum
D) undefined
A constant force $F=50\,\text{N}$ acts through $s=4\,\text{m}$ at $\theta=60^\circ$. The work done is:
A) $Fs$
B) $F+s$
C) $F/s$
D) $50s\,\cos60^\circ$
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta p$
B) $W_{\text{net}}=\Delta U$
C) $W_{\text{net}}=m\Delta v$
D) $W_{\text{net}}=\Delta K$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) zero
B) minimum
C) undefined
D) maximum
Register or Login for comments
Comments: