Work and Energy
A constant force $F=5\,\text{N}$ acts through $s=4\,\text{m}$ at $\theta=60^\circ$. The work done is:
A) $F/s$
B) $Fs$
C) $F+s$
D) $5s\,\cos60^\circ$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) maximum
B) zero
C) undefined
D) minimum
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta K$
B) $W_{\text{net}}=m\Delta v$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=\Delta U$
Dimensions of power are:
A) $M^{0}L^{0}T^{-1}$
B) $ML^{2}T^{-2}$
C) $ML^{2}T^{-3}$
D) $MLT^{-2}$
A constant force $F=10\,\text{N}$ acts through $s=4\,\text{m}$ at $\theta=0^\circ$. The work done is:
A) $Fs$
B) $F+s$
C) $40$
D) $F/s$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) minimum
B) undefined
C) maximum
D) zero
If both mass and velocity are doubled then K.E would be
A) Quadrupled
B) Doubled
C) Eight times
D) Sixteen times
Register or Login for comments
Comments: