Physics MCQs

Physics

Work and Energy


Page 8 of 23

#57

For a conservative force, the potential energy function $U$ satisfies:

A) $\nabla\times\vec F=\nabla U$

B) $\nabla\cdot\vec F=U$

C) $\vec F=-\nabla U$

D) $\vec F=+\nabla U$

Answer:   C
Explanation Photo

Register or Login for comments

Comments:


#58

Energy stored in a spring stretched by $x$ is:

A) $kx$

B) $k/x$

C) $kx^2$

D) $\tfrac12 kx^2$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#59

For a conservative force, the potential energy function $U$ satisfies:

A) $\vec F=+\nabla U$

B) $\nabla\times\vec F=\nabla U$

C) $\nabla\cdot\vec F=U$

D) $\vec F=-\nabla U$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:


#60

The work–energy theorem for a particle of mass $m$ is:

A) $W_{\text{net}}=\Delta K$

B) $W_{\text{net}}=\Delta p$

C) $W_{\text{net}}=\Delta U$

D) $W_{\text{net}}=m\Delta v$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#61

For a conservative force, the potential energy function $U$ satisfies:

A) $\vec F=-\nabla U$

B) $\nabla\cdot\vec F=U$

C) $\vec F=+\nabla U$

D) $\nabla\times\vec F=\nabla U$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#62

Instantaneous power delivered by a constant force is:

A) $P=F^2v$

B) $P=\vec F\cdot\vec v$

C) $P=F/v$

D) $P=Fv\sin\theta$

Answer:   B
Explanation Photo

Register or Login for comments

Comments:


#63

A constant force $F=20\,\text{N}$ acts through $s=10\,\text{m}$ at $\theta=90^\circ$. The work done is:

A) $0$

B) $Fs$

C) $F+s$

D) $F/s$

Answer:   A
Explanation Photo

Register or Login for comments

Comments:


#64

Energy stored in a spring stretched by $x$ is:

A) $kx^2$

B) $kx$

C) $k/x$

D) $\tfrac12 kx^2$

Answer:   D
Explanation Photo

Register or Login for comments

Comments:



Page 8 of 23