Work and Energy
Instantaneous power delivered by a constant force is:
A) $P=F^2v$
B) $P=Fv\sin\theta$
C) $P=\vec F\cdot\vec v$
D) $P=F/v$
The work–energy theorem for a particle of mass $m$ is:
A) $W_{\text{net}}=\Delta U$
B) $W_{\text{net}}=m\Delta v$
C) $W_{\text{net}}=\Delta p$
D) $W_{\text{net}}=\Delta K$
At the bottom of a frictionless track, potential energy is minimum and kinetic energy is:
A) maximum
B) undefined
C) minimum
D) zero
For a conservative force, the potential energy function $U$ satisfies:
A) $\vec F=-\nabla U$
B) $\vec F=+\nabla U$
C) $\nabla\cdot\vec F=U$
D) $\nabla\times\vec F=\nabla U$
A constant force $F=5\,\text{N}$ acts through $s=4\,\text{m}$ at $\theta=90^\circ$. The work done is:
A) $F/s$
B) $Fs$
C) $F+s$
D) $0$
Dimensions of power are:
A) $ML^{2}T^{-3}$
B) $MLT^{-2}$
C) $ML^{2}T^{-2}$
D) $M^{0}L^{0}T^{-1}$
Dimensions of power are:
A) $M^{0}L^{0}T^{-1}$
B) $ML^{2}T^{-2}$
C) $ML^{2}T^{-3}$
D) $MLT^{-2}$
Register or Login for comments
Comments: